• ASTM A240 Grade 316ti Stainless Steel Plate 0.6 - 30.0mm Laser Cutting 1.4571 Stainless Steel
  • ASTM A240 Grade 316ti Stainless Steel Plate 0.6 - 30.0mm Laser Cutting 1.4571 Stainless Steel
  • ASTM A240 Grade 316ti Stainless Steel Plate 0.6 - 30.0mm Laser Cutting 1.4571 Stainless Steel
  • ASTM A240 Grade 316ti Stainless Steel Plate 0.6 - 30.0mm Laser Cutting 1.4571 Stainless Steel
  • ASTM A240 Grade 316ti Stainless Steel Plate 0.6 - 30.0mm Laser Cutting 1.4571 Stainless Steel
  • ASTM A240 Grade 316ti Stainless Steel Plate 0.6 - 30.0mm Laser Cutting 1.4571 Stainless Steel

ASTM A240 Grade 316ti Stainless Steel Plate 0.6 - 30.0mm Laser Cutting 1.4571 Stainless Steel

Type: Stainless Steel Sheets
Standard: ASTM, AISI
Grade: 300 Series
Certification: AISI
Shape: Round
Technique: Hot Rolled
Diamond Member Since 2021

Suppliers with verified business licenses

Trading Company

Basic Info.

Surface Treatment
Polished
Transport Package
Wooden Pallet
Specification
1220*2440, 1500*3000, 1500*6000, 2000*6000mm
Trademark
TISCO BAO STEEL
Origin
China
HS Code
7219340000
Production Capacity
50000kgs

Product Description

ASTM A240  Grade 316Ti Stainless Steel Plate 0.6 - 30.0mm Laser Cutting 1.4571 Stainless Steel

Products Name Stainless Steel Plate
Grade  316Ti  / S31635 / 1.4571
Thickness range cold rolled 0.6 - 3.0mm , hot rolled  4.0 - 30.0mm
Standard size cold rolled 1219*2438mm  hot rolled 1500*6000mm
Standard ASTM A240 / JIS G4305 / EN 10088-2
Brand TISCO POSCO  JISCO LISCO DONGTE BAOSTEEL
MOQ 1 PCS
Service Cutting 

Introduce about 316Ti stainless steel

Stainless steel types 1.4401 and 1.4404 are also known as grades 316 and 316L respectively. Grade 316 is an austenitic grade second only to 304 in commercial importance. 316 stainless steel contains an addition of molybdenum that gives it improved corrosion resistance. This is particularly apparent for pitting and crevice corrosion in chloride environments. 316L, the low carbon version of 316 stainless steel, is immune to grain boundary carbide precipitation (sensitisation). This makes it suited to use in heavy gauge (over about 6mm) welded components. For elevated temperature applications the high carbon variant, 316H stainless steel and the stabilised grade 316Ti stainless steel should be employed. The austenitic structure of 316 stainless steel gives excellent toughness, even at cryogenic temperatures. Property data given in this document is typical for flat rolled products covered by ASTM A240/A240M. ASTM, EN or other standards may cover products sold. It is reasonable to expect specifications in these standards to be similar but not necessarily identical to those given in this datasheet.

Stainless steel grade 316Ti contains a small amount of titanium. Titanium content is typically only around 0.5%. The titanium atoms stabilise the structure of the 316 at temperatures over 800°C. This prevents carbide precipitation at the grain boundaries and protects the metal from corrosion. The main advantage of 316Ti is that it can be held at higher temperatures for a longer period without sensitisation (precipitation) occurring. 316Ti retains physical and mechanical properties similar to standard grades of 316.

Chemical Composition of 316Ti stainless steel

 

316Ti (1.4571) Chemical Composition

Grade C Mn P S Si Cr Ni Mo Ti
316Ti (1.4571) 0.08max

2.0

0.045

0.030

1.0

16.0-18.0 arası

10.0- 14.0 arası

2.0-3.0 arası

0.70 max



Application of 316Ti Stainless Steel

Food processing equipment
Brewery equipment
Chemical and petrochemical equipment
Laboratory benches & equipment
Coastal architectural panelling
Coastal balustrading
Boat fittings
Chemical transportation containers
Heat exchangers
Mining screens

Why Choose 316Ti Stainless Steel

 

It is common to find a connection to a German equipment manufacturer or design. However, 316Ti is practically non-existent in North American inventory, and usually requires a mill production run.

Titanium is used as a stabilizing element in austenitic stainless steels with higher carbon contents, and will reduce the formation of chromium carbides. It can improve the aqueous corrosion resistance of welds made in higher carbon grades. Actually, 316Ti is a derivative of 316 in the same way that 321 is related to 304. In fact, 321 is the titanium stabilized version of 304, but while 321 is common in the petrochemical and aerospace industries, 316Ti is not.

 

 

The reason for the popularity of 316Ti in Europe is really an historical one. 316Ti exists as the preferred material in many specifications that have not been changed in years - it is basically Germany and the Eastern European countries that keep the grade alive. Regions to the west, south and north of Germany have since long changed to mainly using 316/316L for chemical process and aqueous corrosion applications.

 

DAVs ASME Sec VIII Div 1
 

500° F

850° F

1200° F

1500° F

316L

10.9

9.4

NP

NP

316

13.3

11.6

7.4

1.3

316Ti

13.2

11.7

7.4

1.3

316H

13.3

11.6

7.4

1.3

Although it can have a higher carbon content, there seems to be no mechanical property advantage to 316Ti since there is no difference in minimum yield stress for the three variations 316/1.4401, 316L/1.4404, 316Ti/1.4571 in any of the basic EN standards, EN 10088-2 (General application), EN 10088-4 (Structural application) and 10028-7 (Pressure vessel application). In all three Euronorms, the Rp0.2 (YS) is listed as minimum 220 MPa (32 KSI) for plate. In ASTM standards there is a slightly lower YS for 316L (25 KSI) versus 316 and 316Ti (30 KSI), but since nearly all 316L is dual certified as 316, there is no practical difference. The ASME Section VIII Design Allowable Values (DAV) for 316, 316H and 316Ti are the same all the way through the maximum permitted temperature of 1500° F. Note that this is due, in part, to the requirement that any austenitic stainless used at 1000° F or higher must have 0.04% minimum carbon.

 

In the final analysis, for typical aqueous corrosion applications, there is no advantage to 316Ti over dual certified 316/316L. For high temperature service (above 1000° F), there is no advantage in using 316Ti compared to 316H. There may be a few situations where equipment can see both elevated temperature service and occasional aqueous corrosion issues where a stabilized grade is warranted. Processes in the petroleum refining industry that can encounter these conditions include catalytic cracking and hyrdodesulfurization. In these areas, the corrosion resistance of 321 is adequate. If the anticipated aqueous corrosion is too severe for 321, it is more common to consider alloys like Alloy 20 or 825, which are much more readily available in North America.

Photos of Our 316Ti Stainless Steel Plate

ASTM A240 Grade 316ti Stainless Steel Plate 0.6 - 30.0mm Laser Cutting 1.4571 Stainless SteelASTM A240 Grade 316ti Stainless Steel Plate 0.6 - 30.0mm Laser Cutting 1.4571 Stainless SteelASTM A240 Grade 316ti Stainless Steel Plate 0.6 - 30.0mm Laser Cutting 1.4571 Stainless SteelASTM A240 Grade 316ti Stainless Steel Plate 0.6 - 30.0mm Laser Cutting 1.4571 Stainless Steel

 

Send your message to this supplier

*From:
*To:
*Message:

Enter between 20 to 4,000 characters.

This is not what you are looking for? Post a Sourcing Request Now